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Abstract 
 

Aggregates play the skeleton and supporting role in the construction field, high-precision 
measurement and high-efficiency analysis of aggregates are frequently employed to evaluate 
the project quality. Aiming at the unbalanced operation time and segmentation accuracy for 
multi-class segmentation algorithms of aggregate images, a Chaotic Sparrow Search 
Algorithm (CSSA) is put forward to optimize it. In this algorithm, the chaotic map is combined 
with the sinusoidal dynamic weight and the elite mutation strategies; and it is firstly proposed 
to promote the SSA’s optimization accuracy and stability without reducing the SSA’s speed. 
The CSSA is utilized to optimize the popular multi-class segmentation algorithm-Multiple 
Entropy Thresholding (MET). By taking three METs as objective functions, i.e., Kapur 
Entropy, Minimum-cross Entropy and Renyi Entropy, the CSSA is implemented to quickly 
and automatically calculate the extreme value of the function and get the corresponding correct 
thresholds. The image adaptive multi-class segmentation model is called CSSA-MET. In order 
to comprehensively evaluate it, a new parameter I based on the segmentation accuracy and 
processing speed is constructed. The results reveal that the CSSA outperforms the other seven 
methods of optimization performance, as well as the quality evaluation of aggregate images 
segmented by the CSSA-MET, and the speed and accuracy are balanced. In particular, the 
highest I value can be obtained when the CSSA is applied to optimize the Renyi Entropy, 
which indicates that this combination is more suitable for segmenting the aggregate images. 
 
Keywords: Aggregate particle, Chaotic map, Entropy, Image multi-class segmentation, 
Optimization, Sparrow search algorithm 
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1. Introduction 

Aggregate is the main raw material of concrete, and the geometric characteristics of 
aggregates determine the mechanical properties of concrete [1]. Affected by aggregate source, 
rock type, crushing method and grinding degree, it is difficult to accurately and quickly 
measure the rough surface texture, edge shape, particle size and other characteristics of 
aggregate [2]. Image processing techniques can be utilized to assist feature detection of 
aggregates. However, it is more difficult to detect aggregates than other particles because the 
aggregate image is very noisy, and the aggregates overlap or touch each other. 

Multi-class segmentation is an important in image segmentation algorithms, which can 
simultaneously segment multiple different features of an aggregated image [3]. Common 
methods are: Thresholding, Region merging and split, Clustering, and Semantic segmentation. 
They employ distinct color blocks to differentiate locations based on image discontinuities, 
color or grayscale similarity, texture, and other characteristics [4]. The Region-growing [5] is 
typically effective at segmenting smooth areas of aggregate images, and yet the algorithm 
suffers from severe under-segmentation when aggregate particles are adhesion. The Watershed 
segmentation [6] can be applied for the images of densely packed aggregate, but there is over-
segmentation at arris of polygonal aggregates. The Clustering algorithm [7] is good at 
segmenting the aggregate images with clear edges, but the aggregate overlapping problem 
cannot be resolved. The Semantic segmentation [8] might solve the aggregate touching 
problem; but, the aggregate surface texture will affect the segmentation results if the dataset 
cannot cover all the situations. However, creating a database of images with various aggregate 
rough texture features is challenging. The Thresholding is a computationally simple algorithm, 
and the features of the image are usually at the valleys or peaks of the histogram. This 
capability can be exploited to differentiate aggregate surface textures and edges [9]. Multi-
thresholding (MT) easily separates contacting aggregates compared to Single-thresholding, 
while preserving details such as surface roughness, grain edges, etc. [10]. Since the MT is not 
affected by gray-scale similarity, it is more robust. Multiple Entropy Thresholding (MET) [11-
12] is a popular method for automatic threshold determination, besides Otsu [13]. The MET 
is more efficient than Otsu, it determines the thresholds through entropy, and the entropies 
frequently employed for multi-class image segmentation are Kapur [14], Minimum-cross [15] 
and Renyi [16]. Therefore, the MET is utilized as one of the primary linkages in the suggested 
model in this paper. However, when applying the exhaustive method, the MET must test each 
threshold combination one by one in order to pick the optimal thresholds suitable for image 
segmentation. As a result, the more thresholds there are, the lower the operational efficiency. 

The swarm intelligence optimization method learns the population’s cooperative behavior 
in order to discover the target, and adopts a distributed iterative convergence strategy to 
achieve parameter optimization [17]. Compared with the exhaustive method, it can not only 
greatly reduce the time for MET to determine the threshold, but also does not degrade operating 
performance when the amount of thresholds grows [18-19]. Currently popular algorithms of this 
type are: Whale Optimization Algorithm (WOA) [20], Bacterial Foraging Algorithm (BFO), 
Gray Wolf Optimization (GWO) [21], Artificial Bee Colony Algorithm (ABCO), Particle 
Swarm Optimization (PSO) [22], Bat Algorithm (BAT), Mayfly Algorithm (MA) [23], 
Antlion Algorithm (ALO), Butterfly Optimization Algorithm (BOA) and Sparrow Search 
Algorithm (SSA) [24] etc. The precision, stability, convergence speed of algorithm 
optimization is affected by the population position, pathfinding and local optima. For example, 
the population of the GWO is distributed according to grade, resulting in good optimization 
precision. Whale spiral search in the WOA, which makes the WOA iterate faster. The SSA 
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stores the sparrow’s position in the matrix to avoid repeated searches. And the population is 
divided into producers, scroungers, and vigilantes, each of which corresponds to two update 
methods, and the three kinds of sparrows are optimized at the same time, with high efficiency 
and robustness. But these algorithms have two disadvantages that lead to the performance 
degradation, that is, incomplete global search and falling into neighborhood optimum. For a 
more comprehensive search, chaotic map [25] is suggested, and Chen et al. [26] proposed 
reverse learning. For the local optimal solution, Levy flight [26] is suggested to jump out of 
the local area, and Liu et al. [25] made a Cauchy-Gauss mutation strategy. These evolutionary 
strategies are suitable for different optimization algorithms and objective functions; otherwise 
it is difficult to balance the optimization accuracy and convergence speed. Combining these 
performances, SSA [24] is currently a better optimization algorithm, and it has played a very 
good role in the parameter selection in the fields of path planning [27], production forecasting 
[28] and network selection [29]. Hence, this paper takes the SSA as one of the other main links 
of the proposed model, and optimizes the MET based on the improved SSA. 

The following are the study’s primary contributions: 
1. An adaptive multi-class segmentation model for aggregate images, CSSA-MET, is 

suggested. CSSA can quickly and accurately help three METs to determine the thresholds and 
to improve the segmentation efficiency. 

2. A Chaotic SSA is suggested, in which the chaotic map is combined with the sinusoidal 
dynamic weight and the elite mutation strategies, and it is firstly studied to promote the SSA’s 
optimization accuracy and stability without reducing the SSA’s speed. On the benchmark 
function tests, the CSSA outperforms the other seven similar algorithms. 

3. Numerous aggregate image segmentation experiments demonstrate the feasibility and 
effectiveness of the CSSA-MET for segmenting aggregate images. To evaluate all methods 
comprehensively, a new parameter I based on segmentation accuracy and processing speed is 
constructed. According to the results, the CSSA optimized Renyi Entropy performs best for 
segmenting aggregated particles images. 

The remainder of this work is presented: The Section 2 includes the MET and SSA. The 
CSSA-MET is explained in full in Section 3. Section 4 contains the CSSA and CSSA-MET 
tests. Finally, this investigation is summarized in Section 5. 

2. Preliminaries 
In this section, three METs are presented in Subsection 2.1, and SSA is introduced in 
Subsection 2.2. 

2.1 Multiple Entropy Thresholding 
The MET is a multi-class image segmentation algorithm. Its principle is to find a set of values 
to make the total information entropy of the image reach the extreme value. These values are 
the segmentation thresholds. Divide the histogram utilizing thresholds, then translate the result 
to each pixel in the image and assign closest gray value per pixel. The MET determines the 
thresholds through entropy, and the entropies frequently employed are Kapur [14], Minimum-
cross [15] and Renyi [16], which calculate different amounts of information. 

Assuming that the image size is 𝑀𝑀 ×𝑁𝑁, and the image is grayscaled into 0~𝐺𝐺 levels, when 
the gray-scale value is 𝑖𝑖 the number of pixels is 𝑛𝑛𝑖𝑖, and the probability 𝑖𝑖 occurrence is 𝑃𝑃𝑖𝑖 =
𝑛𝑛𝑖𝑖/(𝑀𝑀 × 𝑁𝑁). The gray-scale value range of the 𝑘𝑘-th area is [𝑔𝑔𝑘𝑘−1,𝑔𝑔𝑘𝑘], 0 ≤ 𝑔𝑔𝑘𝑘−1 ≤ 𝑔𝑔𝑘𝑘 ≤ 𝐿𝐿. 
Then the average gray value of this area is 𝑢𝑢𝑘𝑘, and the probability sum of the gray-scale values 
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in this region is 𝜔𝜔𝑘𝑘 = ∑ 𝑃𝑃𝑖𝑖
𝑔𝑔𝑘𝑘
𝑖𝑖=𝑔𝑔𝑘𝑘−1 . The information of this areas is 𝐻𝐻1 , 𝐻𝐻2 , ⋯, and 𝐻𝐻𝐾𝐾+1 

respectively, then the information total is 𝐸𝐸 = 𝐻𝐻1 + 𝐻𝐻2 + ⋯+ 𝐻𝐻𝐾𝐾+1. Calculate the thresholds 
𝑔𝑔(1,2,⋯,𝐾𝐾) that make the 𝐸𝐸 reach the maximum or minimum value, as shown in Fig. 1. The 
mathematical expression of MET calculation thresholds is shown in Table 1. 
 

 
Fig. 1. Schematic diagram of MET determination thresholds. 

 
Table 1. The thresholds determination methods of three METs 

MET Information value of the 𝒌𝒌-th region Thresholds 

Kapur 𝐻𝐻𝑘𝑘(𝑔𝑔) = −∑ 𝑙𝑙𝑛𝑛 �𝑃𝑃𝑖𝑖
𝜔𝜔𝑘𝑘
� ∙ 𝑃𝑃𝑖𝑖

𝜔𝜔𝑘𝑘

𝑔𝑔𝑘𝑘
𝑖𝑖=𝑔𝑔𝑘𝑘−1

  𝑔𝑔(1,2,⋯,𝐾𝐾) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎{𝐸𝐸} 

Minimum-cross 𝐻𝐻𝑘𝑘(𝑔𝑔) = ∑ 𝑖𝑖 ∙ 𝑙𝑙𝑛𝑛 � 𝑖𝑖
𝑢𝑢𝑘𝑘
� ∙ 𝑛𝑛𝑖𝑖

𝑔𝑔𝑘𝑘
𝑖𝑖=𝑔𝑔𝑘𝑘−1

  𝑔𝑔(1,2,⋯,𝐾𝐾) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑖𝑖𝑛𝑛{𝐸𝐸} 

Renyi 𝐻𝐻𝑘𝑘(𝑔𝑔) = 1
1−𝛼𝛼

𝑙𝑙𝑛𝑛 �∑ �𝑃𝑃𝑖𝑖
𝜔𝜔𝑘𝑘
�
𝛼𝛼𝑔𝑔𝑘𝑘

𝑖𝑖=𝑔𝑔𝑘𝑘−1
�, 𝛼𝛼 = 0.5  𝑔𝑔(1,2,⋯,𝐾𝐾) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎{𝐸𝐸} 

 
Table 2 shows the differences in their segmented aggregate images when 𝐾𝐾 = 2. It can be 

observed that the histogram fluctuates smoothly in some gray-scale intervals due to the 
aggregate’s gray scale, but it is rich in extreme points, which are typical features of the 
aggregate image, such as edges and surface rough texture. When 𝐾𝐾 is small, the accuracy is 
low, and as 𝐾𝐾 increases, the MET detects more features. 

 
Table 2. The results of the MET splitting two kinds of aggregate particles when 𝐾𝐾 = 2 

Original 
image 

    
MET Kapur Minimum-cross Renyi 
Image Dark Bright Dark Bright Dark Bright 

Segmented 
image 

      
 

The dark aggregate image’s brightness values are concentrated in dark area, and the 
histogram has only one clear valley. Kapur and Renyi Entropy detected the more brighter part 
details, while Minimum-cross Entropy identified the more darker part features. However, 
bright aggregate image’s brightness values are concentrated in bright parts, and the histogram 
has no obvious valley. At this time, the focus of the three METs detection results is just the 
opposite. The major cause of this disparity is variance in the histogram. Since there are many 
extreme points in the histogram and their distance is close, even with only close thresholds, 

0 𝑔𝑔1 𝑔𝑔2 𝑔𝑔𝑘𝑘−1 𝑔𝑔𝑘𝑘 𝑔𝑔𝐾𝐾 G … 

𝐻𝐻1 𝐻𝐻2 𝐻𝐻𝑘𝑘 𝐻𝐻𝐾𝐾 

𝑖𝑖 

Frequency 

𝑛𝑛𝑖𝑖 
… 

… Grey-scale 

𝑃𝑃𝑖𝑖 
𝑤𝑤𝑖𝑖 𝑢𝑢𝑘𝑘 

… 
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there can be significant differences in results. As a result, the optimization techniques directly 
affect the quality of image segmentation. 

2.2 Sparrow Search Algorithm 
The SSA [24] is a recent optimization algorithm for mimicking sparrow behavior and has 
better convergence accuracy, speed and robustness. The SSA stores each sparrow’s location 
𝑎𝑎𝑖𝑖,𝑗𝑗 in each dimension in a matrix, 𝑖𝑖 ∈ [1,𝑛𝑛], 𝑗𝑗 ∈ [1,𝑑𝑑], 𝑛𝑛 is the number of sparrows and 𝑑𝑑 is 
the dimension. 

Sparrows are divided into producers, scroungers and vigilantes. Producers are the core of 
the team, determine the direction of population movement, and are also the key to global search. 
The scroungers affect local convergence, and vigilante can react quickly when in danger. Each 
sparrow corresponds to two position update formulas, and these three kinds of sparrows update 
their positions respectively according to Table 3. 
 

Table 3. Sparrow location update method 
Sparrow Update method Parameter 

Producers 𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡+1 = �
𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡 ∙ 𝑒𝑒𝑎𝑎𝑒𝑒(−𝑖𝑖/(𝛼𝛼 ∙ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)) 𝑅𝑅2 < 𝑆𝑆𝑇𝑇
𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡 + 𝑄𝑄 ∙ 𝐿𝐿 𝑅𝑅2 ≥ 𝑆𝑆𝑇𝑇

  

𝑡𝑡  and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 : the current and 
maximal iteration count 
𝑅𝑅2: warning value in (0, 1] 
𝑆𝑆𝑇𝑇: safety value in [0.5, 1] 
𝛼𝛼: constant in (0, 1) 
𝑄𝑄: random value 
𝐿𝐿: the all-1 matrix of order 1 × 𝑑𝑑 
𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡: optimal 𝜑𝜑 
𝜑𝜑𝑤𝑤𝑤𝑤𝑤𝑤𝑏𝑏𝑡𝑡: worst 𝜑𝜑 
𝐴𝐴: the matrix of order 1 × 𝑑𝑑,  
𝛽𝛽: the step size control parameter 
𝐾𝐾 ∈ [−1, 1]: controls direction 
𝜀𝜀: a smallest constant 

Scroungers 𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡+1 = �
𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡+1 + �𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡 − 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡+1 � ∙ 𝐴𝐴+ ∙ 𝐿𝐿 𝑖𝑖 ≤ 𝑛𝑛/2
𝑄𝑄 ∙ 𝑒𝑒𝑎𝑎𝑒𝑒�(𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑏𝑏𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡 )/𝑖𝑖2� 𝑖𝑖 > 𝑛𝑛/2

  

𝐴𝐴+ = 𝐴𝐴𝑇𝑇(𝐴𝐴𝐴𝐴𝑇𝑇)−1  

Vigilantes 𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡+1 = �
𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡 + 𝛽𝛽 ∙ �𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡 − 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡 � 𝑓𝑓𝑖𝑖 > 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡

𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡 + 𝐾𝐾 ∙
�𝑚𝑚𝑖𝑖,𝑗𝑗
𝑡𝑡 −𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡

𝑡𝑡 �

(𝑓𝑓𝑖𝑖−𝑓𝑓𝜔𝜔𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡)+𝜀𝜀
𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡

  

 
Fig. 2 left shows the optimization principle of the SSA. It is clear that the performance of 

the SSA is closely connected to sparrow’s population dispersion, optimization pathway, and 
localized optimum. 

To boost the SSA’s effectiveness, Chen et al. [26] added Tent map, dynamic parameters, 
and Levy flight (CDLSSA) to the SSA, with increased accuracy but slower speed. Liu et al. 
[25] advocated a Cubic map and adaptive weight to optimize the SSA (CASSA). The speed of 
this algorithm was fast, but the accuracy was not greatly improved. At present, there is no 
single method that provides the optimal configuration of speed and precision. 

3. Methods 
This section the three evolution strategies of the CSSA are introduced in detail in Subsection 
3.1, and the flow of the CSSA-MET is shown in Subsection 3.2. 

3.1 CSSA 
Chaotic Sparrow Search Algorithm (CSSA) makes targeted improvements to the three 
deficiencies of the SSA, corresponding to three evolutionary strategies. The optimization 
principle diagram of the CSSA is illustrated in Fig. 2 right. The initial sparrow positions are 
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more evenly spread out, the optimization path is wider, and sparrows confined to a local area 
can successfully leap away from it. 

 

 
Fig. 2. SSA and CSSA optimization principle diagrams. 

 

3.1.1 Chaotic map 
Chaotic system is a definite nonlinear system, which has the characteristics of good uniformity, 
high randomness, fast speed and low cost. Therefore, chaos maps are often used to change the 
state of the system. The initial position of the sparrows in the SSA is stochastic, and if the 
sparrows gather, it hinders the worldwide search. As a result, we suggested to adopt a chaotic 
map at initialization. To scatter the sparrows so that they are evenly distributed globally. 
Piecewise map [30] is a chaotic map with high precision and good stability, which can be 
described as (1). 
 

 𝑎𝑎′ = �

𝑎𝑎(𝑘𝑘)/𝑃𝑃 𝑃𝑃 > 𝑎𝑎 ≥ 0
1 − (𝑎𝑎(𝑘𝑘) − 0.5)/(𝑃𝑃 − 0.5) 0.5 > 𝑎𝑎 ≥ 𝑃𝑃
1 + (𝑎𝑎(𝑘𝑘) − 0.5)/(𝑃𝑃 − 0.5) 1 − 𝑃𝑃 > 𝑎𝑎 ≥ 0.5
(1 − 𝑎𝑎(𝑘𝑘))/𝑃𝑃 1 > 𝑎𝑎 ≥ 1 − 𝑃𝑃

,𝑃𝑃 ∈ (0,1) ≠ 0.5 (1) 

 
The chaotic sequences are shown in Fig. 3. The ordinate is the frequency of occurrence of 

𝑎𝑎, which represents the uniformity of 𝑎𝑎, which is used in the SSA to represent the uniformity 
of the mapped sparrow position. Piecewise map has significant randomization, and this chaos 
sequence is most uniform when 𝑃𝑃 = 0.4. 
 

 
Fig. 3. Sequences of 𝑃𝑃 = 0.4, 0.6, 0.9 after Piecewise chaotic map when 𝑎𝑎(1) = 0.1. 

 
Since the range [0, 1] of the chaotic map, it is required to translate into the target space’s 

limits [𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙] during the CSSA initialization phase. 
 
 

Global optimal 
Local optimum 

Producer 
Scrounger 
Vigilante 
Predator 
Optimal path 

or 

SSA CSSA 

𝑎𝑎 𝑎𝑎 𝑎𝑎 
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3.1.2 Sinusoidal dynamic weight 
Instance 𝑦𝑦 = 𝑒𝑒−𝑚𝑚 has an impact on the producers. The traveling distance quickly shrunk as 𝑡𝑡 
rises. It lowers the capacity to do global searches, easier to enter the neighborhood optimum, 
which decreases the optimizing accuracy. 

Therefore, this paper proposes a sinusoidal dynamic weight for adjusting the search range 
for the first time, which can be expressed as (2). 
 

 𝑤𝑤 = �
1
2

(𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑠𝑠𝑖𝑖𝑛𝑛 � 𝑡𝑡∙𝜋𝜋
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

− 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
2
�) 𝑡𝑡 < 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

2

𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 + 𝑠𝑠𝑖𝑖𝑛𝑛( 𝑡𝑡∙𝜋𝜋
2∙𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

) 𝑡𝑡 ≥ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
2

 (2) 

 
Where, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 are the initial and later weight respectively. After many experiments, 
when 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 1 and 𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 = −1, the convergence effect is the best. 

In the early iteration, 𝑤𝑤 is large, population is scattered. In the later iteration, 𝑤𝑤 is small, 
which helps the sparrow to converge. Introduce (2) into the position update of the producers, 
then becomes (3). 

 

 𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡+1 = �
𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡 ∙ 𝑒𝑒𝑎𝑎𝑒𝑒 �− 𝑖𝑖

𝛼𝛼∙𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
� ∙ 𝑤𝑤 𝑅𝑅2 < 𝑆𝑆𝑇𝑇

𝑎𝑎𝑖𝑖,𝑗𝑗𝑡𝑡 + 𝑄𝑄 ∙ 𝐿𝐿 𝑅𝑅2 ≥ 𝑆𝑆𝑇𝑇
 (3) 

3.1.3 Elite mutation 
The sparrows are trapped in a local optimum, and if it doesn’t get out early, it will cause better 
solutions to be missed. 

Therefore, an elite mutation that executes swiftly is put forward. Only at finish for every 
iteration, sort individual fitness values, select an elite sparrow with the best fitness value, and 
update its position according to (4). 

 
 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′ = (𝑢𝑢𝑙𝑙 − 𝑙𝑙𝑙𝑙) ∙ 𝑎𝑎𝑎𝑎𝑛𝑛𝑑𝑑𝑛𝑛 + 𝑙𝑙𝑙𝑙 (4) 
 
Where, 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡′  is the mutated position of the elite sparrow. 

When the SSA becomes stalled inside the nearby region, it can easily leap out and continue 
to global search to increase the algorithm’s performance. Even if this sparrow had converged 
to the global optimal solution, only changing the search path of one sparrow will not affect the 
final convergence result. 

3.2 CSSA-MET 
This paper proposes an adaptive multi-class segmentation model the CSSA-MET for 
aggregate images, which is composed of a swarm intelligence optimization algorithm CSSA 
and a multi-class segmentation algorithm MET. The flowchart of the CSSA-MET is shown in 
Fig. 4, and the purple font in the figure is the innovation point. 
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Fig. 4. Flowchart of adaptive multi-class segmentation model CSSA-MET. 

4. Experiments 
The benchmark function experiment for the optimization algorithm CSSA evaluation is in 
Subsection 4.1, and the evaluation experiment for the aggregate image adaptive multi-class 
segmentation model CSSA-MET is in Subsection 4.2. 

Our studies are carried out with a computer outfitted with an Intel (R) Core (TM) i5-10400F 
@2.90 GHz CPU, 16 GB RAM and a 64-bit Win-10 operating system. 

4.1 Performance of Optimization Algorithm CSSA 
Benchmark functions are used to assess the performance of optimization algorithms. The 
capacity to locally converge is tested by the unimodal function, while the ability to globally 
explore is tested by the multimodal function. 

The pertinent expressions are displayed in Table 4, and their versions are shown in Fig. 5 
at the dimension (D) is 2. 

The CSSA is contrasted to the WOA [20], GWO [21], PSO [22], MA [23], SSA [24], 
CASSA [25], and CDLSSA [26]. The parameters are set in Table 5. 

The accuracy, stability, and speed of the optimization method are taken into consideration 
while choosing the average value, standard deviation and time-consuming as assessment 
measures. Since the population’s starting positions are stochastic, the average of 60 
optimisation tests is utillized as the final evaluation result, these are provided in Table 6. 

 

Start 

Grayscale processing 
and draw a histogram 

Initialize fixed and variable parameters 
𝑛𝑛, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, ub, lb, 𝑃𝑃𝑃𝑃, 𝑆𝑆𝑃𝑃, 𝑆𝑆𝑇𝑇, 𝑡𝑡 = 1; 𝑓𝑓(𝑎𝑎), 𝑑𝑑 

Choose a MET (𝑓𝑓(𝑎𝑎)) and  
the number of thresholds K (d) 

End 

Chaos map perturbs the initial position of the population  

Find the positions of the best and worst sparrows (𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝑑𝑑 
and 𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑏𝑏𝑡𝑡,𝑑𝑑), and perform elite mutation on 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝑑𝑑 

CSSA MET 

Update the locations of producers, scroungers and 
vigilantes respectively 

Execute the greedy algorithm to reserve a better position 
Output threshold 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝑑𝑑 and  

fitness value 𝑓𝑓�𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝑑𝑑� 

Input the RGB aggregate image 

Output the segmented  
aggregate image 

Sort the fitness values and divide the sparrows 
into producers, scroungers and vigilantes 

𝑡𝑡 = 𝑡𝑡 + 1 𝑡𝑡 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 
No Yes 
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Table 4. Benchmark functions 
Class Function expression, argument range, optimal value 

Uni- 
modal  

𝐹𝐹1(𝑎𝑎) = ∑ 𝑎𝑎𝑖𝑖2𝐷𝐷
𝑖𝑖=1 , [−100,100]𝐷𝐷, 0 

𝐹𝐹2(𝑎𝑎) = 𝑎𝑎𝑎𝑎𝑎𝑎{|𝑎𝑎𝑖𝑖|, 1 ≤ 𝑖𝑖 ≤ 𝑃𝑃}, [−100,100]𝐷𝐷, 0 

𝐹𝐹3(𝑎𝑎) = ∑ [(𝑎𝑎𝑖𝑖 − 1)2 + 100(𝑎𝑎𝑖𝑖+1 − 𝑎𝑎𝑖𝑖2)2]𝐷𝐷
𝑖𝑖=1 , [−30,30]𝐷𝐷, 0 

Multi- 
modal  

𝐹𝐹4(𝑎𝑎) = −∑ 𝑎𝑎𝑖𝑖 ∙ 𝑠𝑠𝑖𝑖𝑛𝑛��|𝑎𝑎𝑖𝑖|�𝐷𝐷
𝑖𝑖=1 , [−500,500]𝐷𝐷, -418.9829D 

𝐹𝐹5(𝑎𝑎) = −20 𝑒𝑒𝑎𝑎𝑒𝑒 �−0.2�1
𝐷𝐷
∑ 𝑎𝑎𝑖𝑖2𝐷𝐷
𝑖𝑖=1 � − 𝑒𝑒𝑎𝑎𝑒𝑒 �1

𝐷𝐷
∑ 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜋𝜋𝑎𝑎𝑖𝑖)𝐷𝐷
𝑖𝑖=1 � + 20 + 𝑒𝑒, [−32,32]𝐷𝐷, 0 

𝐹𝐹6(𝑎𝑎) = 𝜋𝜋
𝐷𝐷

{10𝑠𝑠𝑖𝑖𝑛𝑛2(𝑦𝑦1 ∙ 𝜋𝜋) + ∑ (1 − 𝑦𝑦𝑖𝑖)2𝐷𝐷−1
𝑖𝑖=1 (10𝑠𝑠𝑖𝑖𝑛𝑛2(𝑦𝑦𝑖𝑖+1 ∙ 𝜋𝜋) + 1) + ∑𝑢𝑢(𝑎𝑎𝑖𝑖 , 10, 100, 4)}, 

[−50,50]𝐷𝐷, 0 

𝑦𝑦 = (𝑎𝑎 + 5)/4, 𝑢𝑢(𝑎𝑎, 10, 100,4) = �100 ∙ (±𝑎𝑎 − 10)4 | ± 𝑎𝑎| > 10
0 |𝑎𝑎| ≤ 10  

 

 
Fig. 5. 2-D representations of benchmark functions 𝐹𝐹1~𝐹𝐹6. 

 
Table 5. Parameters of the optimization algorithms 

Category Algorithm Parameter 

Classic 

WOA 𝛼𝛼 ∈ [0,2], 𝑙𝑙 = 1, 𝑙𝑙 ∈ [−1,1] 
GWO 𝛼𝛼 decreases linearly from 2 to 0, 𝑎𝑎1, 𝑎𝑎2 ∈ [0,1] 
PSO 𝐶𝐶1 = 𝐶𝐶2 = 1.5, 𝜔𝜔 = 0.74 
MA 𝑔𝑔 = 1, 𝑔𝑔𝑑𝑑𝑎𝑎𝑎𝑎𝑒𝑒 = 1, 𝛼𝛼1 = 1, 𝛼𝛼2 = 𝛼𝛼3 = 1.5 

SSA series  

SSA 𝑃𝑃𝑃𝑃 = 20%, 𝑆𝑆𝑃𝑃 = 10%, 𝑆𝑆𝑇𝑇 = 0.8 
CDLSSA 𝑃𝑃𝑃𝑃 = 20%, 𝑆𝑆𝑃𝑃 = 10%, 𝑆𝑆𝑇𝑇 = 0.8, 𝑙𝑙𝑒𝑒𝑙𝑙𝑦𝑦 𝑙𝑙𝑒𝑒𝑎𝑎𝑡𝑡 = 1.5, 𝐾𝐾 = 2 
CASSA 𝑃𝑃𝑃𝑃 = 20%, 𝑆𝑆𝑃𝑃 = 10%, 𝑆𝑆𝑇𝑇 = 0.8, 𝑆𝑆 = 1 
CSSA 𝑃𝑃𝑃𝑃 = 20%, 𝑆𝑆𝑃𝑃 = 10%, 𝑆𝑆𝑇𝑇 = 0.8, 𝑃𝑃 = 0.4, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 1, 𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 = −1 

Uniform parameters 𝑛𝑛 = 60, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 600, number of experiments is 60, 𝑑𝑑 = 30 

 
On the uni-modal and multi-modal functions in Table 6, the accuracy (Avg) and stability 

(SD) of the CSSA are always optimal. Although the speed (T/s) of the CSSA is not optimal, it 
is also close to the optimal value. The CASSA has weak stability, whereas the CDLSSA has 
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good accuracy and stability, but its speed is twice that of the CSSA, and only the CSSA 
achieves the optimal combination of speed and precision. 
 

Table 6. Accuracy, stability and speed evaluation of eight optimization algorithms 
Function WOA GWO PSO MA SSA CDLSSA CASSA CSSA 

Average value (Avg) 
𝐹𝐹1 2.56 × 10−105 3.14 × 10−43 3.34 × 10−9 3.23 × 10−8 6.75 × 10−51 0 9.18 × 10−43 0 
𝐹𝐹2 3.14 × 101 6.69 × 10−11 1.62 × 100 4.79 × 101 7.95 × 10−15 4.18 × 10−206 5.70 × 10−10 0 
𝐹𝐹3 2.71 × 101 2.67 × 101 2.53 × 102 6.53 × 101 1.32 × 10−3 7.14 × 10−4 1.09 × 10−3 𝟒𝟒.𝟓𝟓𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟒𝟒 
𝐹𝐹4 −9.51 × 103 −6.04 × 103 −8.11 × 103 −1.05 × 104 −1.04 × 103 −1.86 × 103 −1.41 × 103 −𝟏𝟏.𝟐𝟐𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟒𝟒 
𝐹𝐹5 4.09 × 10−15 2.63 × 10−14 6.56 × 10−1 9.22 × 10−1 9.47 × 10−16 𝟖𝟖.𝟖𝟖𝟖𝟖 × 𝟏𝟏𝟏𝟏−𝟏𝟏𝟐𝟐 1.01 × 10−15 𝟖𝟖.𝟖𝟖𝟖𝟖 × 𝟏𝟏𝟏𝟏−𝟏𝟏𝟐𝟐 
𝐹𝐹6 1.53× 10−2 2.28× 10−2 9.34× 10−2 3.47× 10−2 6.63× 10−7 2.65× 10−6 4.74× 10−7 2.06× 𝟏𝟏𝟏𝟏−𝟖𝟖 

Standard deviation (SD) 
𝐹𝐹1 1.99 × 10−104 4.35 × 10−43 5.35 × 10−9 1.49 × 10−7 5.23 × 10−50 0 4.60 × 10−42 0 
𝐹𝐹2 2.68 × 101 6.74 × 10−11 7.40 × 10−1 8.62 × 100 3.78 × 10−14 0 2.86 × 10−9 0 
𝐹𝐹3 6.16 × 10−1 6.32 × 10−1 7.60 × 102 4.52 × 101 3.67 × 10−3 1.87 × 10−3 3.02 × 10−3 𝟏𝟏.𝟏𝟏𝟒𝟒 × 𝟏𝟏𝟏𝟏−𝟑𝟑 
𝐹𝐹4 1.64 × 103 9.78 × 102 6.09 × 102 3.55 × 102 1.94 × 103 1.56 × 102 1.79 × 103 5.67E-01 
𝐹𝐹5 2.33 × 10−15 3.53 × 10−15 7.35 × 10−1 6.03 × 10−1 4.59 × 10−16 0 6.43 × 10−16 0 
𝐹𝐹6 1.46× 10−2 1.06× 10−2 1.35× 10−1 7.04× 10−2 1.56× 10−6 5.68× 10−6 1.53× 10−6 3.31× 𝟏𝟏𝟏𝟏−𝟕𝟕 

Time-consuming (T) 
𝐹𝐹1 0.430 1.171 1.260 2.972 0.411 0.759 𝟏𝟏.𝟑𝟑𝟓𝟓𝟓𝟓 0.407 
𝐹𝐹2 0.425 1.174 1.202 2.970 0.414 0.743 𝟏𝟏.𝟒𝟒𝟏𝟏𝟏𝟏 0.405 
𝐹𝐹3 0.460 1.213 1.261 3.112 𝟏𝟏.𝟒𝟒𝟑𝟑𝟐𝟐 0.812 0.465 0.444 
𝐹𝐹4 0.471 1.215 1.295 3.125 0.426 0.773 0.468 0.454 
𝐹𝐹5 0.442 1.201 1.250 3.098 0.412 0.735 0.416 0.446 
𝐹𝐹6 0.924 1.661 1.763 4.384 0.902 1.556 0.900 0.874 

 

 
Fig. 6. Convergence curves of eight optimization algorithms on 𝐹𝐹1~𝐹𝐹6. 

 
The iteration curves of the eight optimization methods are displayed in Fig. 6 for evaluation 

of the beneficial effects of these three evolutionary strategies on the CSSA. The first is chaotic 
mapping, which is reflected in the iteration curves of 𝐹𝐹3~𝐹𝐹6. The population’s starting position 

CSSA WOA CASSA SSA MA PSO GWO CDLSSA 
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is more uniform, which makes the initial value of the CSSA better. The second is the dynamic 
weight, it is reflected at 𝐹𝐹1~𝐹𝐹2,𝐹𝐹6, and search range is wider, so that the optimal solution of 
the CSSA is continuously updated, and it converges to the global optimum in later iterations. 
Finally, the elite mutation is reflected in some broken lines on 𝐹𝐹1, 𝐹𝐹3, 𝐹𝐹4 and 𝐹𝐹6. When they 
fall into a local optimum, they can effectively escape and improve the solution’s accuracy. 

Wilcoxon rank-sum test [31] is utilized to compare the significant distinction between two 
samples. This sample size in Table 6 is small. In order to avoid unreliable results, samples 
with 𝑃𝑃 = 2,60 were added to the test. Table 7 displays the results. Bold words in the table 
indicate significant differences (𝑃𝑃 − 𝑙𝑙𝑎𝑎𝑙𝑙𝑢𝑢𝑒𝑒 ≤ 0.05). 
 

Table 7. Wilcoxon test of CSSA vs. other optimization algorithms 
Evaluation Avg SD T 

WOA 𝟐𝟐.𝟑𝟑𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟑𝟑 𝟓𝟓.𝟑𝟑𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟒𝟒 6.89 × 10−1 
GWO 𝟑𝟑.𝟕𝟕𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟑𝟑 𝟐𝟐.𝟒𝟒𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟑𝟑 𝟏𝟏.𝟐𝟐𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟑𝟑 
PSO 𝟖𝟖.𝟒𝟒𝟕𝟕 × 𝟏𝟏𝟏𝟏−𝟒𝟒 𝟐𝟐.𝟑𝟑𝟖𝟖 × 𝟏𝟏𝟏𝟏−𝟓𝟓 𝟒𝟒.𝟑𝟑𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟒𝟒 
MA 𝟓𝟓.𝟒𝟒𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟑𝟑 𝟑𝟑.𝟐𝟐𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟒𝟒 𝟏𝟏.𝟕𝟕𝟒𝟒 × 𝟏𝟏𝟏𝟏−𝟓𝟓 
SSA 3.26 × 10−1 𝟑𝟑.𝟓𝟓𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟐𝟐 7.93 × 10−1 

CDLSSA 6.87 × 10−1 8.97 × 10−1 𝟐𝟐.𝟐𝟐𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟐𝟐 
CASSA 3.57 × 10−1 𝟑𝟑.𝟓𝟓𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟐𝟐 8.76 × 10−1 

 
It can be seen that there are significant differences between the CSSA and WOA, GWO, 

PSO, and MA, except for T of the WOA. This shows that the CSSA is far superior to these 
four algorithms in accuracy (Avg) and stability (SD), and the CSSA is similar to the WOA in 
speed (T). Similarly, CSSA is much better than SSA and CASSA in stability (SD), and much 
better than CDLSSA in speed (T). 

In addition, it can also be seen that the SSA, CDLSSA, CASSA and CSSA are similar (no 
bold). In terms of accuracy and stability, the CDLSSA is the best, followed by the CASSA, 
and finally the SSA. In terms of speed, the CASSA is the best, followed by the SSA, and the 
CDLSSA is the worst. Combining these conclusions Table 6 shows that the CSSA has 
maximum accuracy, stability and also has a faster convergence speed. 

4.2 Evaluation of Segmentation Model CSSA-MET 
The MET is utilized as the optimization algorithm’s objective function, and they are merged 
with the CSSA and SSA one by one to form six techniques, including three CSSA-METs and 
three SSA-METs. Simultaneously, Fuzzy C-means (FCM) is compared. 

The 100+ aggregate image tests are obtained in the Key Laboratory of Road Construction 
Technology and Equipment, and Fig. 7 displays five of them. 

From the point of view of the histogram, they contain abundant glitch-like extreme points, 
and these extreme points are close in distance, which are the characteristics of aggregates. 
When the surface texture is rougher, although the threshold is similar, it might lead to a 
decrease in roughness, so the optimization algorithm’s effectiveness will affect the 
segmentation precision. 

From the perspective of aggregate characteristics, these particles have different 
characteristics such as shape, color, size, edge and surface rough texture. The features are used 
to evaluate gravel and pebbles, size aggregates, calculate sanding time, and detect parent rock 
type. During image processing, the quantity 𝐾𝐾 of thresholds is decided upon in accordance 
with needs. 𝐾𝐾 = 2~6 in relevant literatures, Table 7 displays partial results of the CSSA-MET 
segmented aggregate images when 𝐾𝐾 = {2,4,6}. 
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(a)                           (b)                           (c)                           (d)                           (e) 

Fig. 7. Five aggregate images and their histograms. 
 
Because in Subsection 4.1, the CSSA only iterates 200 times on the 30-dimensional 

function to complete the convergence. After many experiments, only 100 iterations of the 
CSSA-MET efficiently segment images. The remaining parameters are identical to those used 
in the prior section, and just 100 repetitions are required to reduce segmentation time while 
maintaining accuracy. 

From a subjective point of view, when 𝐾𝐾 = 2, the FCM segmentation effect is the best, 
second the Renyi. The MET’s precision continues to improve at 𝐾𝐾 = 4 , while the FCM 
becomes increasingly unstable. When 𝐾𝐾 = 6 , Renyi segmented contact or overlapping 
aggregate particles performed well, second the Kapur, while the Minimum-cross brightness is 
higher. The grey- scale value divergences are severe even though the FCM’s edges are visible. 
 

Table 8. Partial results of CSSA-MET segmentation of aggregate images 

Image 
Kapur Minimum-cross Renyi 

FCM 
SSA CSSA SSA CSSA SSA CSSA 

𝐾𝐾 = 2 
(a) 

       

𝐾𝐾 = 4 
(c) 

       

𝐾𝐾 = 6 
(e) 

       
 

Overall, the CSSA-MET outperforms the SSA-MET on the segmentation of aggregate 
images because the CSSA can obtain more accurate thresholds. The criterion for measuring 
optimization method’s accuracy is whether optimized objective function can obtain a better 
fitness value. Table 9 displays the fitness values and corresponding thresholds obtained by the 
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CSSA and SSA at 𝐾𝐾 = 6, the bolder of the two is superior. The higher the fitness value of 
Kapur and Renyi in Table 1, the better, while Minimum-cross is the opposite. The CSSA:SSA 
ratio for obtaining optimal values is 9:0 (Table 9), demonstrating that the CSSA must have 
superior capabilities. Compared with the SSA-MET, the CSSA-MET has a more accurate 
threshold for segmenting images. 

 
Table 9. Thresholds determined by CSSA-MET and their corresponding fitness values 

Image Parameter Kapur Minimum-cross Renyi 
SSA CSSA SSA CSSA SSA CSSA 

(a) Thresholds 83 156 43 
191 103 131 

69 168 110 
199 137 36 

33 123 148 
180 89 46 

123 96 185 
153 32 66 

41 200 136 
93 73 169 

148 185 78 
225 41 114 

Fitness 24.1227 24.2284 133205.7494 121076.1347 24.3861 24.5142 

(c) Thresholds 39 192 131 
89 69 161 

74 231 119 
190 153 46 

160 32 183 
132 61 97 

88 151 57 30 
181 119 

164 229 145 
188 37 97 

94 227 55 
130 192 161 

Fitness 24.1205 24.4108 127944.5518 123043.8349 24.3552 24.6649 

(e) 
Thresholds 36 193 127 

85 64 163 
33 64 124 157 

193 93 
177 138 112 

87 57 29 
122 88 26 56 

184 154 
127 217 102 
189 58 157 

76 188 157 
221 42 117 

Fitness 24.1677 24.2632 139618.2252 133274.0496 24.3328 24.5365 
 

As the image size in Table 8 is too small to see the difference between the CSSA-MET 
and SSA-MET segmentation results, the local regions of (c) are intercepted when 𝐾𝐾 = 6. They 
are aggregate surface roughness, texture and edge, respectively, and each local image contains 
at least two main features. Table 10 shows their segmentation results. It can be seen that the 
segmented images of the CSSA-MET contain more detailed features, while the results of the 
SSA-MET lose a lot of specifics, particularly roughness. 

 
Table 10. Partial local results for CSSA-MET segmentation of aggregate images 

Original 
image 

Kapur Minimum-cross Renyi 
SSA CSSA SSA CSSA SSA CSSA 

       

       

       

       
 

 



404                                                                       Wang et al.: Adaptive Multi-class Segmentation Model of Aggregate  
Image Based on Improved Sparrow Search Algorithm 

Combining Table 10 with the data of (c) in Table 9, it can be seen that even if the thresholds 
are not significantly different, it can cause a large difference in results. This demonstrates that 
the CSSA’s effectiveness is critical for segmentation models. 

The above is a subjective evaluation, and the image segmentation algorithm also needs a 
comprehensive objective evaluation. The similarity between the segmentation result and the 
ground-truth must be compared in order to assess the segmented image’s reliability. Since the 
eye couldn’t mark the true under each 𝐾𝐾, the segmentation results are contrasted to the original 
images. 

The segmentation results are contrasted with the original image since the eye was unable 
to distinguish the real under each K. 

The Peak Signal to Noise Ratio (PSNR), Structure Similarity (SSIM), Feature Similarity 
(FSIM) and the average time (T) to segment an image are made as assessment criteria. Relevant 
expressions are shown in Table 11.  

 
Table 11. Image quality evaluation index 

Index Expression Parameter 

PSNR 𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅 = 20 𝑙𝑙𝑐𝑐𝑔𝑔10(255 ∙ � 𝑀𝑀×𝑁𝑁
∑∑(𝑓𝑓−�̂�𝑓)2

)  
𝑀𝑀 × 𝑁𝑁: image size 
𝑓𝑓: original image 
𝑓𝑓: segmented image 

SSIM 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝑆𝑆, 𝑆𝑆) =
(2𝜇𝜇𝑓𝑓𝜇𝜇𝑓𝑓�+𝐶𝐶1)×(2𝜎𝜎𝑓𝑓,𝑓𝑓�+𝐶𝐶2)

(𝜇𝜇𝑓𝑓2+𝜇𝜇𝑓𝑓�
2+𝐶𝐶1)×(𝜎𝜎𝑓𝑓2+𝜎𝜎𝑓𝑓�

2+𝐶𝐶2)
  

𝜇𝜇: gray average 
𝜎𝜎: gray standard deviation 
𝐶𝐶: constant, take 𝐶𝐶1 = 𝐶𝐶2 = 6.45 

FSIM 

𝐹𝐹𝑆𝑆𝑆𝑆𝑀𝑀 = ∑𝑆𝑆𝐿𝐿×𝑃𝑃𝐶𝐶𝑚𝑚
∑𝑃𝑃𝐶𝐶𝑚𝑚

， 𝑆𝑆𝐿𝐿(𝑤𝑤) = 𝑆𝑆𝑃𝑃𝐶𝐶𝑆𝑆𝐺𝐺，  

𝑆𝑆𝑃𝑃𝐶𝐶 = 2𝑃𝑃𝐶𝐶1𝑃𝑃𝐶𝐶2+𝑇𝑇1
𝑃𝑃𝐶𝐶1

2+𝑃𝑃𝐶𝐶2
2+𝑇𝑇1
，𝑆𝑆𝐺𝐺 = 2𝐺𝐺1𝐺𝐺2+𝑇𝑇2

𝐺𝐺1
2+𝐺𝐺2

2+𝑇𝑇2
  

𝑃𝑃𝐶𝐶𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝐶𝐶1,𝑃𝑃𝐶𝐶1)  

𝑆𝑆𝐿𝐿: similarity score 
𝑃𝑃𝐶𝐶: phase consistency 
𝐺𝐺: image gradient 
𝑇𝑇 : constant, take 𝑇𝑇1 = 0.85 , 𝑇𝑇2 =
160 

 
Greater information and smaller noise levels are indicated by a higher PSNR score; 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀 ∈

[0, 1], the more similar the segmented picture is to the original image, the higher the SSIM 
value; 𝐹𝐹𝑆𝑆𝑆𝑆𝑀𝑀 ∈ [0, 1], the tinier the feature difference between the image before and after 
segmentation, the larger the FSIM value. Therefore, the higher the values of these three 
parameters, the better the segmentation results. The average values of sixty tests are utilized 
as the ultimate results because of the unpredictability of the optimization algorithm 
population’s beginning position. The statistical data of the PSNR, SSIM and FSIM are shown 
in Tables 12-14. The bold font in these tables is the value of the superior assessment criterion 
between the CSSA and SSA 

From an optimization perspective, when the CSSA is compared to the SSA, the better PSNR 
values ratio is 30:0 (Table 12), the better SSIM values ratio is 25:7 (Table 13), and the better 
FSIM values ratio is 27:4 (Table 14). This means the capabilities of the CSSA to optimize the 
MET has an advantage in aggregate image segmentation. And as the number of thresholds 
increases, these benefits are grown. Especially in terms of the PSNR values, the CSSA-MET 
is better than the SSA-MET, which shows that the CSSA-MET can segment more details, and 
is suitable for all kinds of aggregate images, with high robustness. 

From the threshold perspective, when 𝐾𝐾 = 2 , the PSNR values of the FCM are the 
maximum, but under the influence of the gray-scale values of the clustering centers and 
neighborhood pixels, the FCM performs worse and worse when 𝐾𝐾 = 4, 6. On the contrary, the 
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performance of the CSSA-Renyi Entropy has been outstanding, achieving the best PSNR 
values at 𝐾𝐾 = 4, 6, following Kapur, although Minimum-cross’s results are slightly worse, but 
also better than the FCM. Similarly, on the SSIM and FSIM values, the CSSA-MET has 
achieved better results, and the FCM is similar to the above conclusion. These are the 
difference between the three METs in aggregate image segmentation. 
 

Table 12. PSNR values 

Image K Kapur Minimum-cross Renyi FCM 
SSA CSSA SSA CSSA SSA CSSA 

(a) 
2 12.2 12.2 11.7 11.7 12.9 12.9 14.1 
4 16.5 𝟏𝟏𝟐𝟐.𝟐𝟐 15.1 𝟏𝟏𝟓𝟓.𝟑𝟑 17.2 𝟏𝟏𝟕𝟕.𝟒𝟒 11.5 
6 18.4 𝟐𝟐𝟏𝟏.𝟐𝟐 15.5 𝟏𝟏𝟖𝟖.𝟏𝟏 21.4 𝟐𝟐𝟐𝟐.𝟑𝟑 10.1 

(b) 
2 13.0 13.0 12.2 12.2 13.3 13.3 13.3 
4 16.8 𝟏𝟏𝟕𝟕.𝟏𝟏 14.5 𝟏𝟏𝟒𝟒.𝟐𝟐 17.8 𝟏𝟏𝟖𝟖.𝟏𝟏 12.5 
6 18.8 𝟐𝟐𝟏𝟏.𝟏𝟏 15.2 𝟏𝟏𝟐𝟐.𝟐𝟐 20.5 𝟐𝟐𝟏𝟏.𝟖𝟖 8.55 

(c) 
2 13.2 13.2 12.1 12.1 13.5 13.5 13.4 
4 16.9 𝟏𝟏𝟕𝟕.𝟐𝟐 14.8 𝟏𝟏𝟓𝟓.𝟏𝟏 17.7 𝟏𝟏𝟖𝟖.𝟕𝟕 12.1 
6 20.8 𝟐𝟐𝟏𝟏.𝟕𝟕 15.9 𝟏𝟏𝟐𝟐.𝟒𝟒 21.0 𝟐𝟐𝟐𝟐.𝟏𝟏 10.4 

(d) 
2 10.6 10.6 11.9 11.9 10.9 10.9 13.3 
4 16.2 𝟏𝟏𝟐𝟐.𝟕𝟕 14.7 𝟏𝟏𝟒𝟒.𝟖𝟖 17.5 𝟏𝟏𝟕𝟕.𝟕𝟕 11.2 
6 18.6 𝟐𝟐𝟏𝟏.𝟐𝟐 16.2 𝟏𝟏𝟕𝟕.𝟓𝟓 20.4 𝟐𝟐𝟏𝟏.𝟐𝟐 10.5 

(e) 
2 12.7 12.7 11.9 11.9 13.1 13.1 13.4 
4 16.5 𝟏𝟏𝟐𝟐.𝟐𝟐 14.4 𝟏𝟏𝟒𝟒.𝟐𝟐 17.6 𝟏𝟏𝟕𝟕.𝟕𝟕 10.2 
6 17.6 𝟏𝟏𝟓𝟓.𝟖𝟖 15.0 𝟏𝟏𝟕𝟕.𝟏𝟏 21.2 𝟐𝟐𝟐𝟐.𝟖𝟖 9.93 

 
Table 13. SSIM values 

Image K 
Kapur Minimum-cross Renyi 

FCM 
SSA CSSA SSA CSSA SSA CSSA 

(a) 
2 0.308 𝟏𝟏.𝟑𝟑𝟏𝟏𝟓𝟓 𝟏𝟏.𝟑𝟑𝟏𝟏𝟕𝟕 0.306 0.321 0.321 0.330 
4 0.500 𝟏𝟏.𝟓𝟓𝟏𝟏𝟐𝟐 0.505 𝟏𝟏.𝟓𝟓𝟏𝟏𝟖𝟖 𝟏𝟏.𝟓𝟓𝟏𝟏𝟏𝟏 0.510 0.190 
6 𝟏𝟏.𝟐𝟐𝟏𝟏𝟓𝟓 0.606 0.601 𝟏𝟏.𝟐𝟐𝟏𝟏𝟕𝟕 0.614 𝟏𝟏.𝟐𝟐𝟏𝟏𝟐𝟐 0.041 

(b) 
2 0.350 0.350 0.344 0.344 0.358 0.358 0.358 
4 0.551 𝟏𝟏.𝟓𝟓𝟓𝟓𝟐𝟐 0.550 𝟏𝟏.𝟓𝟓𝟓𝟓𝟐𝟐 0.559 𝟏𝟏.𝟓𝟓𝟐𝟐𝟐𝟐 0.068 
6 0.657 𝟏𝟏.𝟐𝟐𝟓𝟓𝟓𝟓 0.650 𝟏𝟏.𝟐𝟐𝟐𝟐𝟒𝟒 0.657 𝟏𝟏.𝟐𝟐𝟐𝟐𝟑𝟑 0.032 

(c) 
2 0.312 0.312 0.307 0.307 0.318 0.318 0.317 
4 𝟏𝟏.𝟒𝟒𝟓𝟓𝟏𝟏 0.488 0.488 𝟏𝟏.𝟒𝟒𝟓𝟓𝟏𝟏 𝟏𝟏.𝟓𝟓𝟏𝟏𝟏𝟏 0.486 0.217 
6 0.577 𝟏𝟏.𝟓𝟓𝟕𝟕𝟓𝟓 0.596 𝟏𝟏.𝟐𝟐𝟏𝟏𝟑𝟑 0.582 𝟏𝟏.𝟓𝟓𝟓𝟓𝟐𝟐 0.144 

(d) 
2 0.317 0.317 0.340 0.340 0.329 0.329 0.341 
4 𝟏𝟏.𝟒𝟒𝟓𝟓𝟓𝟓 0.497 𝟏𝟏.𝟓𝟓𝟏𝟏𝟏𝟏 0.509 0.500 𝟏𝟏.𝟓𝟓𝟏𝟏𝟐𝟐 0.098 
6 0.594 𝟏𝟏.𝟓𝟓𝟓𝟓𝟕𝟕 0.608 𝟏𝟏.𝟐𝟐𝟏𝟏𝟏𝟏 0.596 𝟏𝟏.𝟐𝟐𝟏𝟏𝟏𝟏 0.078 

(e) 
2 0.442 0.442 0.439 0.439 0.454 0.454 0.454 
4 0.634 𝟏𝟏.𝟐𝟐𝟑𝟑𝟓𝟓 0.631 𝟏𝟏.𝟐𝟐𝟑𝟑𝟐𝟐 0.646 𝟏𝟏.𝟐𝟐𝟒𝟒𝟕𝟕 0.113 
6 0.715 𝟏𝟏.𝟕𝟕𝟐𝟐𝟐𝟐 0.712 𝟏𝟏.𝟕𝟕𝟑𝟑𝟑𝟑 0.734 𝟏𝟏.𝟕𝟕𝟑𝟑𝟖𝟖 0.075 

 
Table 15 shows the standard deviation (SD) of the CSSA-MET and SSA-MET in 60 

experiments, which can measure the stability of the algorithm, and the SD value is inversely 
proportional to the stability. Generally, the stability is the highest when 𝐾𝐾 = 2. As the K value 
increases, the SD value increases and the stability decreases. The figure of merit ratio of the 
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CSSA-MET and SSA-MET is 19:8, indicating that the CSSA-MET has better stability. 
 

Table 14. FSIM values 

Image K Kapur Minimum-cross Renyi FCM SSA CSSA SSA CSSA SSA CSSA 

(a) 
2 0.722 0.722 𝟏𝟏.𝟕𝟕𝟏𝟏𝟓𝟓 0.718 0.734 0.734 0.742 
4 0.868 𝟏𝟏.𝟖𝟖𝟕𝟕𝟏𝟏 0.870 𝟏𝟏.𝟖𝟖𝟕𝟕𝟐𝟐 0.872 𝟏𝟏.𝟖𝟖𝟕𝟕𝟒𝟒 0.741 
6 0.916 𝟏𝟏.𝟓𝟓𝟏𝟏𝟓𝟓 0.905 𝟏𝟏.𝟓𝟓𝟏𝟏𝟕𝟕 0.919 𝟏𝟏.𝟓𝟓𝟐𝟐𝟒𝟒 0.632 

(b) 
2 0.756 0.756 0.745 0.745 0.761 0.761 0.772 
4 0.892 𝟏𝟏.𝟖𝟖𝟓𝟓𝟑𝟑 0.878 𝟏𝟏.𝟖𝟖𝟖𝟖𝟏𝟏 0.896 𝟏𝟏.𝟖𝟖𝟓𝟓𝟕𝟕 0.758 
6 0.928 𝟏𝟏.𝟓𝟓𝟑𝟑𝟓𝟓 0.913 𝟏𝟏.𝟓𝟓𝟐𝟐𝟒𝟒 0.930 𝟏𝟏.𝟓𝟓𝟑𝟑𝟓𝟓 0.666 

(c) 
2 0.723 0.723 0.716 0.716 0.724 0.724 0.723 
4 𝟏𝟏.𝟖𝟖𝟐𝟐𝟐𝟐 0.861 0.856 𝟏𝟏.𝟖𝟖𝟓𝟓𝟓𝟓 𝟏𝟏.𝟖𝟖𝟐𝟐𝟐𝟐 0.860 0.721 
6 0.903 𝟏𝟏.𝟓𝟓𝟏𝟏𝟕𝟕 0.899 𝟏𝟏.𝟓𝟓𝟏𝟏𝟕𝟕 0.901 𝟏𝟏.𝟓𝟓𝟏𝟏𝟑𝟑 0.628 

(d) 
2 0.728 0.728 𝟏𝟏.𝟕𝟕𝟓𝟓𝟏𝟏 0.750 0.737 0.737 0.744 
4 0.872 𝟏𝟏.𝟖𝟖𝟕𝟕𝟒𝟒 0.865 0.865 0.873 𝟏𝟏.𝟖𝟖𝟕𝟕𝟓𝟓 0.690 
6 0.920 𝟏𝟏.𝟓𝟓𝟐𝟐𝟓𝟓 0.905 𝟏𝟏.𝟓𝟓𝟏𝟏𝟕𝟕 0.916 𝟏𝟏.𝟓𝟓𝟐𝟐𝟐𝟐 0.608 

(e) 
2 0.801 0.801 0.794 0.794 0.808 0.808 0.806 
4 0.908 𝟏𝟏.𝟓𝟓𝟏𝟏𝟓𝟓 0.898 𝟏𝟏.𝟓𝟓𝟏𝟏𝟐𝟐 0.915 𝟏𝟏.𝟓𝟓𝟏𝟏𝟐𝟐 0.704 
6 0.936 𝟏𝟏.𝟓𝟓𝟒𝟒𝟕𝟕 0.925 𝟏𝟏.𝟓𝟓𝟒𝟒𝟏𝟏 0.948 𝟏𝟏.𝟓𝟓𝟓𝟓𝟐𝟐 0.654 

 
Table 15. SD values 

Para-
meter K Kapur Minimum-cross Renyi FCM 

SSA CSSA SSA CSSA SSA CSSA 

PSNR 
2 4.61 × 10−2 𝟒𝟒.𝟒𝟒𝟖𝟖 × 𝟏𝟏𝟏𝟏−𝟐𝟐 𝟓𝟓.𝟐𝟐𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟐𝟐 5.83 × 10−2 4.83 × 10−2 𝟒𝟒.𝟕𝟕𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟐𝟐 2.28 × 10−3 
4 0.36 𝟏𝟏.𝟑𝟑𝟒𝟒 0.31 𝟏𝟏.𝟐𝟐𝟐𝟐 𝟏𝟏.𝟓𝟓𝟏𝟏 0.54 4.28 
6 𝟏𝟏.𝟑𝟑𝟏𝟏 1.35 𝟏𝟏.𝟖𝟖𝟏𝟏𝟏𝟏 1.66 2.14 𝟏𝟏.𝟕𝟕𝟐𝟐 35.51 

SSIM 
2 6.29 × 10−4 𝟓𝟓.𝟓𝟓𝟐𝟐𝟗𝟗 − 𝟏𝟏𝟒𝟒 9.03 × 10−4 𝟖𝟖.𝟖𝟖𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟒𝟒 𝟓𝟓.𝟐𝟐𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟒𝟒 5.70 × 10−4 2.65 × 10−4 
4 𝟐𝟐.𝟓𝟓𝟕𝟕 × 𝟏𝟏𝟏𝟏−𝟑𝟑 3.01 × 10−3 5.25 × 10−3 𝟑𝟑.𝟏𝟏𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟑𝟑 5.01 × 10−3 𝟒𝟒.𝟖𝟖𝟖𝟖 × 𝟏𝟏𝟏𝟏−𝟑𝟑 0.65 
6 1.27 × 10−2 𝟏𝟏.𝟏𝟏𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟐𝟐 𝟏𝟏.𝟏𝟏𝟖𝟖 × 𝟏𝟏𝟏𝟏−𝟐𝟐 1.23 × 10−2 2.05 × 10−2 𝟏𝟏.𝟐𝟐𝟖𝟖 × 𝟏𝟏𝟏𝟏−𝟐𝟐 3.12 

FSIM 
2 1.18 × 10−3 𝟏𝟏.𝟏𝟏𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟑𝟑 1.17 × 10−3 𝟏𝟏.𝟏𝟏𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟑𝟑 8.80 × 10−4 𝟖𝟖.𝟐𝟐𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟒𝟒 5.21 × 10−4 
4 3.50 × 10−3 𝟑𝟑.𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟑𝟑 5.12 × 10−3 𝟐𝟐.𝟕𝟕𝟕𝟕 × 𝟏𝟏𝟏𝟏−𝟑𝟑 𝟐𝟐.𝟕𝟕𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟑𝟑 3.26 × 10−3 0.61 
6 1.02 × 10−2 𝟖𝟖.𝟖𝟖𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟑𝟑 1.02 × 10−2 𝟕𝟕.𝟕𝟕𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟑𝟑 1.40 × 10−2 𝟖𝟖.𝟖𝟖𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟑𝟑 3.69 

 
The average time-consuming of image segmentation of each algorithm is statistically 

calculated in Table 16. The ratio of the better T values of the CSSA-MET to the SSA-MET is 
5:4. the CSSA’s three techniques did not affect the SSA’s efficiency, and the CSSA was 
occasionally faster than the SSA. The key cause is the aggregate histogram’s particularity, it 
has a lot of extreme points, resulting in a lot of local optimum in the optimization process. 
Elite mutation allows the SSA to easily slip into these locals, but the CSSA can jump out of 
them in time. As a result, the CSSA-MET is better suited for segmenting aggregate images. 

 
Table 16. T values 

K Kapur Minimum-cross Renyi FCM SSA CSSA SSA CSSA SSA CSSA 
2 2.024 s 1.789 s 1.762 s 1.798 s 1.775 s 1.745 s 1.752 s 
4 1.806 s 1.816 s 1.842 s 1.837 s 1.789 s 1.823 s 5.168 s 
6 1.873 s 1.862 s 1.953 s 1.929 s 1.836 s 1.854 s 8.589 s 
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For the same segmentation method, it is not always optimal in the four parameters, which 

brings trouble to the practical evaluation of the algorithms. 
The segmentation models’ line graphs for the four evaluation parameters are displayed in 

Fig. 8. A method cannot achieve the optimal values on all parameters at the same time, 
therefore, these four indicators are normalized and fused into a new weight parameter I, 𝑆𝑆 ∈
[0, 1] . The algorithm’s advantage increases with increasing I value. The I value can be 
calculated by (5), and the I value statistics of all algorithms are summarized in Table 17. 
 
 𝑆𝑆 = ∑∑ |𝐼𝐼𝐾𝐾,𝑃𝑃−𝑤𝑤𝑤𝑤𝑤𝑤𝑏𝑏𝑡𝑡𝐾𝐾,𝑃𝑃|

𝑁𝑁𝐾𝐾,𝑃𝑃∙∆𝐼𝐼𝐾𝐾,𝑃𝑃
 (5) 

 
Where, 𝑃𝑃 = 𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅, 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀,𝐹𝐹𝑆𝑆𝑆𝑆𝑀𝑀,𝑇𝑇  are the evaluation parameters, 𝐾𝐾 = 2, 4, 6 , ∆𝑆𝑆𝐾𝐾,𝑃𝑃 =
|𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡𝐾𝐾,𝑃𝑃 − 𝑤𝑤𝑐𝑐𝑎𝑎𝑠𝑠𝑡𝑡𝐾𝐾,𝑃𝑃|, 𝑤𝑤𝑐𝑐𝑎𝑎𝑠𝑠𝑡𝑡 is the worst value, 𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡 is the optimal value, and 𝑁𝑁𝐾𝐾,𝑃𝑃  is the 
number of (𝐾𝐾,𝑃𝑃). In this study, 𝑁𝑁𝐾𝐾,𝑃𝑃 = 3 × 4 = 12. 
 

 
Fig. 8. The segment methods’ line graph for the four assessment criteria. The abscissa corresponds to 

the CSSA-Kapur, SSA-Kapur, CSSA-Minimum-cross, SSA-Minimum-cross, CSSA-Renyi, SSA-
Renyi, and FCM from left to right. 

 
In Subsection 4.1, the Wilcoxon rank sum test showed that the SSA, CASSA, CDLSSA 

and CSSA were similar. Therefore, the comprehensive evaluation results of the CASS-MET 
and CDLSSA-MET are added in Table 17. 
 

Table 17. I values 
Algorithm SSA CDLSSA CASSA CSSA 

Kapur 0.662422 0.706977 0.710967 0.746250 
Minimum-cross 0.637545 0.657510 0.665500 0.692467 

Renyi 0.784693 0.796192 0.800182 0.825743 
FCM 0.272944 

 
In Table 17, from a horizontal perspective, the I value of the CSSA-MET is always higher. 

Followed by the CASSA-MET, the CDLSSA-MET is affected by the T value, the 
comprehensive evaluation parameters are low, and the result of the SSA-MET is not very ideal. 
Vertically, the I value of Renyi Entropy is always higher. This is followed by Kapur Entropy 
and finally by Minimum-cross Entropy. 
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On the whole, the CSSA-Renyi Entropy has the strongest realizability for segmenting 
aggregate images. The result of the CSSA-Renyi Entropy segmenting aggregate image (e) 
when 𝐾𝐾 = 6 and the segmentation histogram are shown in Fig. 10. It can be seen that the 
threshold selection is reasonable, and the surface texture and edge of the aggregate are well 
preserved. 

 

 
Fig. 9. CSSA-Renyi Entropy segmentation result and segmentation histogram of aggregate image (e) 

when 𝐾𝐾 = 6. 

5. Conclusion 
This paper proposes an adaptive multi-class image segmentation model for multi-aggregate 
images based on the Chaotic SSA, named CSSA-MET, it aims to overcome the shortcoming 
of MET’s unbalanced running time and accuracy in multi-class segmentation of aggregate 
images. Firstly, the CSSA combines Chaotic map, sinusoidal dynamic weights and elite 
mutation to improve the performance of the SSA. Benchmark function experiment and 
Wilcoxon rank-sum test verify better optimization ability of the CSSA. Then, the CSSA is 
utilized to quickly determine the correct MET thresholds. In the various segmentation 
experiments, the CSSA-MET is proved that can segment aggregate images in more aggregate 
details. And finally, a normalized weight parameter I is proposed to evaluate the performance 
of segmented images, which integrates PSNR, SSIM, FSIM and T, and all five indicators show 
that the CSSA-MET is more effective than the SSA-MET and FCM, and among the three 
METs, the CSSA optimized Renyi Entropy performs is the best, achieving the best balance 
between speed and accuracy, and effectively retaining rough surface texture and edge features. 

In future work, we will explore the image segmentation focus of each method and try to 
fuse them to achieve parallel classification of multiple aggregate features. In addition, the three 
evolutionary strategies, the CASSA and CASSA-MET models in this paper can be used in 
similar fields and have broad application prospects. 
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